

63

Akshay Bhardwaj and A J Singh, “Privilege escalation attack on android and its defences,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 4, pp. 63-66, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Privilege Escalation Attack on Android and Its

Defences

Akshay Bhardwaj1, A J Singh2

1, 2 Department of Computer Science, Himachal Pradesh University, Himachal Pradesh, India

Email address: akshay117@gmail.com, aj.hpucs@gmail.com

Abstract— Android is most usually utilized stage for cell phones today which gloats of a propelled security model having MAC and

sandboxing. These components permit engineers and clients to confine the execution of an application to the benefits allocated. The misuse

of vulnerabilities of the project is bound inside the benefit limits of an applications sandbox. Benefit acceleration assaults have developed

complex as the utilization of android frameworks have expanded. Various types of components have given some kind of rest to the

designers however the security highlight taking care of by the engineers has not helped much. In this paper we talk about the nuts and bolts

of the benefit heightening assault and the different strategies used to counter and keep this issue.

Keywords— privilege escalation; attacks; sandboxing; android; security.

I. INTRODUCTION

he prevalence of cell phones and the unfathomable

number of the comparing applications makes these

stages alluring to assailants. Presently, different

types of malware e x i s t f o r cell phone stages; counting

android. Most advanced mobile phones depend completely on

application sandboxing and favored access for security.

Applications are detached and allowed special consents as it

were. The application performs activities which are expressly

permitted in the application's sandbox. Android checks

comparing authorization assignments at runtime.

Consequently, an application is not permitted to get to favored

assets without having the right consents.

In this paper we demonstrate that Android's sandbox model is

adroitly defective and really permits benefit acceleration

assaults. This is not an execution bug, yet rather a major

defect. In Section 2 we talk about the distinctive Android

security instruments and quickly clarify how the benefit

acceleration assault can be completed bypassing the

sandboxing highlight. In Section 3, we demonstrate the benefit

heightening assault. In Section 4, we talk about the related

work for the avoidance of this sort of assaults and the different

models. In Section 5, we break down the different

countermeasures and attractive quality of the arrangements. In

Section 6, we finish up in light of perceptions.

II. ANDROID SECURITY MECHANISMS

Here we talk about the Android security components in a

word. Optional Access Control (DAC): The DAC component

depends on documents (protests) and process (subjects) which

access rules. The standards are set and determined to have

better get to control system. Sandboxing: Android is a benefit

isolated working framework. Sandboxing secludes

applications from each other and from framework assets.

Framework documents are possessed by either the

"framework" or "root" client, while different applications have

own extraordinary identifiers.

Authorization Mechanism: Applications may pronounce

custom sorts of consent marks to confine access to claim

interfaces. Required consents are unequivocally indicated in a

Manifest record and are affirmed at establishment time taking

into account checks against the marks of the applications

pronouncing these authorizations and client affirmation. At

runtime, the reference screen checks whether the use of this

segment has imperative authorizations.

Segment Encapsulation: Application parts can be indicated as

open or private.

Application Signing: Android uses trust based permission

mechanism which is verified by third party. But it need not be

signed by a certificate authority. It is just a self signed

certificate. The certificate is included in its APK file such that

the signature is can be validated at install time.

III. PRIVILEGE ESCALATION ATTACK ON ANDROID

Fig 1 delineates a case of benefit acceleration assault on

Android. In the figure, there are three applications running in

their own particular DVMs. Application 1 has no consents.

The segments in application 2 is not monitored by any

consents, they are available by segments of some other

application. Thus, both segments of application 1 can get to

segments 1 in application 2. Application 2 has authorization

P1, Therefore, both segments of utilization 2 can get to part 1

of use 3 which is secured by authorization P1.

From the fig we watch that segment 1 of utilization 1 is

getting to part 1 of use 2. Be that as it may, it does not have

authorization P1, so it is not permitted to get to segment 1 of

use 3. Then again, application 2 has authorization P1. Thus,

part 1 of utilization 2 is permitted to get to segment 1 of

application 3. Along these lines, despite the fact that part 1 of

utilization 1 is not permitted to get to segment 1 of application

3, it can get to it by means of segment 1 of use 2. Along these

lines, the benefit of use 2 is raised to application 1 for this

situation. Keeping in mind the end goal to keep this assault,

segment 1 of use 2 ought to uphold that segments getting to it

must have authorization P2. This should be possible at code

level or by guarding part 1 by authorization P2. Nonetheless,

T

64

Akshay Bhardwaj and A J Singh, “Privilege escalation attack on android and its defences,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 4, pp. 63-66, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

this depends on application designers to play out the

requirement at the right places. This is a blunder inclined

methodology as application engineers may not be security

specialists. [2]

The benefit acceleration assault on Android was initially

proposed by Davi et al. [1] in which they showed an case of

the assault. They demonstrated that a bona fide application

misused at runtime or a malevolent application can heighten

allowed consents. Be that as it may, they didn't recommend

any guard for the assault in the paper. The most significant

works are security augmentations to Android security

engineering, in particular Saint [12] and Kirin [6, 7], as they

could give a few measures against benefit acceleration assault.

Holy person is a strategy augmentation which permits

application engineers to characterize complete access control

rules for their segments.

Holy person gives a component to guarantee that the guest

has in any event the same consents as a callee, as a

fundamental condition to avert benefit heightening assaults.

Be that as it may, Saint accept that entrance to parts is

certainly permitted. It gives certain security against benefit

heightening assaults as the application can control which

applications can get to it. Be that as it may, this put the weight

of authorizing security to application designers which is

blunder inclined as the greater part of them are not security

specialists. Here we see a comparability with the

methodology embraced in C/C++ dialects to delegate limits

checking to engineers. Notwithstanding numerous years of

examination, assaults that adventure too far out mistakes in C

and C++ projects are still common: New programming bugs

ceaselessly show up permitting foes to perform runtime

abuses.

Accordingly, we accept, comparably it is a mistake

inclined way to deal with depend on engineers to characterize

right Saint arrangements or to characterize them by any

means. Kirin is an application confirmation administration to

moderate malware at introduce time. Kirin is apparatus that

investigates Show records in the APK of the applications to

guarantee that conceded consents conform to a framework

wide approach. I t a n a l y s e s p e r m i s i o n s t h a t require

unsafe mixes of authorizations [7] or it can break down a

superposition of authorizations allowed to all applications

introduced on a stage [6]. In any case, their methodology can't

recognize applications defenseless against benefit heightening

assault. The last approach permits location of uses defenseless

against benefit accelerations assaults as it gives a photo of

potential information streams crosswise over applications. By

the by, as it breaks down potential information streams (as

inverse to genuine information streams) furthermore, can't

pass judgment on about nearby security authorizations made

by applications (by method for reference screen snares), it

experiences false positives. Along these lines, it is valuable for

manual examination, yet can't give solid choices for

programmed security implementations.

Enck et al. [8] depict Android security instruments in

points of interest. Blazes [3, 4] gives direction on creating

secure applications on the Android stage. Schmidt et al. [14]

review instruments which can increment gadget security

furthermore demonstrates case of Trojan malware for Android

[13]. In [11] Nauman et al. proposed p e rmi s i o n system

permitting clients to support a subset of consents the

application requires at establishment time, furthermore force

imperatives for every consent. Chaudhuri [5] presents a center

formal dialect taking into account sort examination of Java

develops to depict Android applications dynamically and to

reason about their security properties. Shin et al. [18]

formalize Android consent system by speaking to it as a state-

based model which can be ended up being secure with given

security necessities by a hypothesis prover. Barrera et al. [2]

propose a philosophy to examine consent use by different

applications and gives aftereffects of such an investigation for

a determination of 1,100 Android applications. Mulliner[10]

presents a strategy for powerlessness investigation

(programming bugs) of SMS executions on various versatile

stages including Android. . Shabtai et al. [16, 17] give a

extensive security evaluation of Android security instruments

and recognize high-hazard dangers, however try not to

consider a danger of a benefit acceleration assault we depict in

this paper. A late piece based benefit heightening assault [9]

demonstrates to pick up root benefits by abusing a memory

related helplessness dwelling in the Linux piece. Interestingly,

our assault does not require helplessness in the Linux part, yet

rather depends on a traded off (helpless or malevolent) client

space application.

Besides, Shabtai et al. [15] demonstrate to embrace the

Linux Security Module (LSM) structure for the Android stage,

which mitigates part based benefit heightening assaults, for

example, [9]. Jakobsson et al. [19] proposed a product based

authentication way to deal with recognize any malware that

executes or is enacted by intrudes. Taking into account

memory-printing of customer gadgets, it makes it outlandish

for malware to cover up in RAM without being identified.

TaintDroid [20], in light of corrupt examination, tracks the

stream of protection delicate information. At the point when

the information are transmitted over the system, clients are

told to recognize getting into mischief applications. QUIRE

[21] is a security arrangement that can protect against benefit

heightening assaults by means of confounded delegate

assaults. To address this issue, when there is an Inter Process

Communication (IPC) demand between Android applications,

QUIRE [21] permits the applications to work with a lessened

benefit of its guest by following the call chain of IPCs. Chan

[36] et al. proposed a defenselessness checking framework to

identify considerate applications which neglect to authorize

the extra keeps an eye on authorizations conceded.

65

Akshay Bhardwaj and A J Singh, “Privilege escalation attack on android and its defences,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 4, pp. 63-66, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

IV. PRIVILEGE ATTACKS MEASURES AND CONSIDERATIONS

V. CONCLUSION

Non-special applications can heighten authorizations by

summoning ineffectively outlined higher-favored applications

that don't adequately ensure their interfaces. Albeit as of late

proposed augmentations to Android security systems [6,12]

mean to address the issue of inadequately planned

applications, they experience the ill effects of pragmatic

deficiencies. Holy person [12] gives a way to secure interfaces

of uses, yet depends on application engineers to characterize

Saint arrangements accurately, while Kirin [6] can distinguish

information streams permitting benefit acceleration assaults,

however brings about false positives.

From the investigation we can suggest that Android's

sandbox model neglects to limit limits against runtime assaults

as the authorization framework does not check transitive

benefit utilization. The majority of the strategies neglect to

address intriguing assaults despite the fact that few of them are

sufficiently close [22].Looking forward to systems that can

deal with a wide range of benefit heightening assaults giving

improved security keeping engineers free from considering

about Android security issues.

REFERENCES

[1] L. Davi: A. Dmitrienko: A.-R. Sadeghi: M. Winandy (2010); Privilege

escalation attacks on Android, ISC.

[2] Patrick P. F. Chan: Lucas C. K. Hui:S.M. Yui (2011); A Privilege
Escalation Vulnerability Checking System for Android Applications,

IEEE

[3] J. Burns (2008): Developing secure mobile applications for Android.
[4] J. Burns. Black Hat (2009); Mobile application security on Android.

[5] A. Chaudhuri (2009); Language-based security on Android, ACM

SIGPLAN, pages 1–7.
[6] W. Enck: M. Ongtang: P. McDaniel (2008); Mitigating Android

software misuse before it happens. Technical Report, Pennsylvania State

University.
[7] W. Enck: M. Ongtang: P. McDaniel (2009); On lightweight mobile

phone application certification, ACM CCS ’09, pages 235–245.

[8] W. Enck: M. Ongtang: P. McDaniel (2009); Understanding Android
security, IEEE Security and Privacy, 7(1):50–57

[9] A. Lineberry: D. L. Richardson: T. Wyatt (2010); These aren’t t h e

permissions you’re looking for, BlackHat
[10] C. Mulliner (2009); Fuzzing the phone in your phones, Black Hat USA

[11] M. Nauman: S. Khan: X. Zhang (2010); Apex: Extending Android

permission model and enforcement with user-defined runtime
constraints,ASIACCS ’10, pages 328–332. ACM

[12] M. Ongtang: S.McLaughlin: W. Enck: P. McDaniel (2009);

Semantically rich application-centric security in Android. In ACSAC
’09, pages 340–349. IEEE Computer Society.

[13] A-D. Schmidt: H.-G. Schmidt: L.Batyuk: J. H. Clausen: S. A. Camtepe:

S. Albayrak: C. Yildizli (2009); Smartphone malware evolution
revisited: Android next target?, Malware 2009, pages 1–7.

[14] A.-D. Schmidt: H. G. Schmidt: J. Clausen: K. A. Yuksel: O. Kiraz: A.
Camtepe: S. Albayrak (2008); Enhancing security of linux-based

Android devices, Lehmann.

[15] A. Shabtai: Y. Fledel: Y. Elovici (2010); Securing Android powered
mobile devices using SELinux, IEEE Security and Privacy, 8:36–44.

[16] A. Shabtai: Y. Fledel: U. Kanonov: Y. Elovici: S. Dolev (2009); Google

Android: A state-of-the-art review of security mechanisms, CoRR,
abs/0912.5101.

[17] A. Shabtai: Y. Fledel: U. Kanonov: Y. Elovici: S. Dolev: C. Glezer

(2009); Google Android: A comprehensive security assessment. IEEE
Security and Privacy, 8(2):35–44x

[18] W. Shin: S. Kiyomoto: K. Fukushima: T. Tanaka(2010); A formal

model to analyze the permission authorization and enforcement in the
Android framework invited paper. In SecureCom 2010

[19] M. Jakobsson: K.-A. Johansson (2010); Retroactive detection of

malware with applications to mobile platforms,” HotSec’10, pp. 1–13.
[20] W. Enck: P. Gilbert: Sheth. A. N(2010); Taintdroid: An information-

flow tracking system for real-time privacy monitoring on smartphones,

9th USENIX Symposium on Operating Systems Design and
Implementation

[21] M. Dietz: S. Shekar: Wallach(2011); Quire: lightweight provenance for

smartphone operating systems, USENIX Security Symposium
[22] Sven Bugiel: Lucas Davi: Alexandra Dmitrienko: Thomas Fischer:

Ahmed-Reza Sadeghi (2011); XManDroid: A New Android Evolution to

Mitigate Privilege Escalation Attacks, Technische University.
[23] M. Ongtang: K. Butler: P. McDaniel (2010); Porscha: Policy oriented

secure content handling in Android. In ACSAC'10:

[24] R. Schlegel: K. Zhang: X. Zhou: M. Intwala: A. Kapadia: X. Wang
(2011); Soundcomber: A Stealthy and Context-Aware Sound Trojan for

Smartphones, NDSS, pages 17-33.

[25] M. Conti: Nguyen: B. Crispo (2010); CRePE: Context-related policy
enforcement for Android, ISC 2010

[26] A. P. Felt: H. Wang: A. Moshchuk: S. Hanna: E. Chin (2011);

Permission re-delegation: Attacks and defenses. USENIX Security
Symposium

[27] E. Chin: A. P. Felt: K. Greenwood: D.Wagner (2011); Analyzing inter-

application communication in Android. MobiSys.

66

Akshay Bhardwaj and A J Singh, “Privilege escalation attack on android and its defences,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 4, pp. 63-66, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

[28] A. P. Felt: E. Chin: S. Hanna: D. Song: D. Wagner (2011); Android

permissions demystified. TR, B.

