

85

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

A Taxonomy of Prevention and Analysis

Based Security Solutions for Android

Akshay Bhardwaj1, A J Singh2

1, 2Department of Computer Science, Himachal Pradesh University, Himachal Pradesh, India

Email address: akshay117@gmail.com, aj.hpucs@gmail.com

Abstract—Google's Android is a standout amongst the most well known portable working framework stages today, being sent on an

extensive variety of cell phones from different makers. It is named as a benefit isolated working framework which actualizes some novel

security components. Late research and security assaults on the stage, in any case, have demonstrated that the security model of Android is

imperfect and is powerless against transitive use of benefits among applications. Benefit heightening assaults have been appeared to be

noxious and with the across the board and developing utilization of the framework, the stage for these assaults is likewise becoming more

extensive. This gives an inspiration to plan and execute better security structures and systems to alleviate these assaults. This paper talks

about an arrangement and correlation of various systems and security expansions which are counteractive action and investigation based

proposed in late research.

Keywords— Taxonomy; solution; analysis; android; attacks.

I. INTRODUCTION

ndroid is a popular platform for smart phones and

tablet devices. Since the first release in 2008, its

popularity and sales of devices hosting the system

have increased at a very fast rate.

A report by Strategy Analytics in January 2013 states that

smartphone sales grew 38% in the last quarter of 2012 to reach

217 million units worldwide, and over 700 million units for

the entire year. Of this number, 68.4% devices operate the

Android platform. In October 2012, Google said that there

were about 700,000 applications available for downloading

onto Android devices matching the number of applications on

Apple’s App Store for iOS devices .There are a large number

of end user devices and a large number of applications being

used on them. Handsets today have become full-fledged

computing platforms supporting complete operating systems

and complex applications. However, this brings new security

challenges. A recent mobile security report states that: “The

sheer number of mobile applications at a time when the

technology in mobile security is still in its infancy presents

complex, multifaceted, and unprecedented security challenges

to enterprises while putting individual privacy at high risk”.

The current model of the Android Application Market allows

developers to upload arbitrary applications at a minimal fee.

This creates a large attack surface for malicious applications to

be published on the market and installed on end user devices.

According to the Kaspersky Security Bulletin 2012, 99% of

the newly discovered mobile malicious programs target the

Android platform. Soundcomber is a trojan that uses

innocuous permissions and context-aware tone- and speech-

analysis to extract small amounts of targeted private data. The

Trojan GGTracker (The Lookout Blog, 2012) sends SMS to a

premium-rate number and can steal private information from

the device. Apple screens applications posted to its

AppMarket, which protects users from malicious applications.

Nevertheless, applications could still have vulnerabilities that

may be exploited. Google, on the other hand, does not screen

applications being published to its market, making it possible

for malicious applications to easily reach users. It occasionally

takes down applications that are found to contain malware.

Android implements a permissions and sandboxing

mechanism through its middleware layer to control access to

resources and mediate inter-application communication. It is a

privilege separated system, with each application having its

own distinct system identity. This model is not able to prevent

transitive usage of permissions that can be leveraged to launch

privilege escalation attacks. It is possible for a malicious

application to gain capabilities leaked from benign

applications making its capabilities more than it is permitted to

have. It is possible to prevent this by having strong checking

of permissions; however, since developers are not security-

minded, this is not used in practice. As a result, there is need

for a more secure framework to be implemented to prevent

these attacks.

II. TAXONOMY OF EXISTING SOLUTIONS

In this subsection we present our taxonomy of existing related

security systems on Android OS. Since existing works are

implemented in different ways and architectures using

different techniques and mechanisms, we can categorize them

in many ways. Our classification is objective-based. We group

existing works in a category if they have same objective and

characteristics. We categorize them into three main categories:

(1) Prevention-based, (2) Analysis-based and (3) Runtime

Monitoring. For this paper however we limit ourselves to

discuss the first two only.

2.1 Prevention-based

Since Dalvik bytecode is vulnerable to reverse

engineering, hackers are increasingly aiming at binary code

targets to launch attacks on high-value mobile applications

(paid/free) across all platforms. They can directly access,

compromise, and exploit the binary code (e.g., analyze or

reverse engineer sensitive code, modify code to change

A

mailto:aj.hpucs@gmail.com

86

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

application behavior, or inject malicious code) .Based on a

new research study done by ARXAN .97% of the top 100 paid

Android apps and 87% of the top 100 paid Apple iOS apps

have been hacked using repackaging.

In this subsection, we review remarkable existing works with

focus on app repackaging attacks (code modification or code

injection) and reverse engineering (code analysis).

Fig. 1. Overall App ink architecture.

Fig. 2. Kirin based software installer.

2.1.1 Kirin

Mitigating malicious apps at install time using certification

process on apps is the main goal of Kirin [1].

Kirin uses a set of predefined security rules on apps’ requested

permissions to find matched malicious permission requests

and characteristics. Here, the rules are defined based on those

permissions that are sensitive and leads to misusing of

permissions and dangerous activities.

They use a static analysis tool called Pscout in order to extract

all permission specifications for Android apps without

modifying the apps. Using this system at install time can help

users to make real-time decisions whether installing the apps

or not. They tested the Kirin using 311 downloaded apps from

top ranked applications from an official Android app Market.

After experiments, Kirin detects 5 malicious apps with a high

level of security risk. Figure 2 shows the Kirin based software

installer flow and its components.

2.1.2 AppInk

In order to mitigate app repackaging, Zhou et al. propose

and develop a graph-based dynamic watermarking mechanism

for Android apps. They designed and developed a tool named

AppInk, which takes the source code of an app and a

watermark value as inputs, in order to automatically generate a

new app with a transparently-embedded watermark and the

associated manifest app.

They improve the system through embedding software

watermarks dynamically into the running state of an app to

represent the ownership of developers. After embedding the

watermarks, the repackaged app can be verified by an

authorized verifying party and embedded watermarks can be

recognized through the manifest app without any user effort

and interaction. It is worthy to note that the embedded code

segments can be later recovered in order to extract the

watermarks values. Figure 1 shows the overall AppInk

architecture and its related components.

In order to demonstrate effectiveness and resistance of the

proposed solution, they study two other works and the results

indicate that AppInk is effective in defending against common

automatic repackaging attacks.

2.2 Analysis-based solutions

Similar to PC malware, mobile malware has begun taking

steps to evade detection by camouflaging as benign apps. In

this category, the main goal is to use static and dynamic

analysis to detect security sensitive and malicious behaviors of

apps . Proposed works in this category focus types of attacks:

(1) malicious behavior detection, (2) app similarity detection

in order to detect repackaged apps, (3) misusing of granted

permissions and (4) detecting apps’ vulnerabilities. In this

subsection we review works in any of the above subcategories.

2.2.1 RiskMon

RiskMon [4] tries to answer the question ”are those

behaviors necessarily inappropriate?”. RiskMon is a machine-

learning approach for coping with this challenge and present a

continuous and automated risk assessment framework.

Figure 3 shows the basic architecture of the RiskMon.

RiskMon combines users’ expectations and runtime behaviors

of trusted applications to generate a risk assessment baseline

that captures appropriate behaviors of applications. Users’

perceptions on applications is the key part of the framework.

First, it collects the user’s expectations on the installed apps

on the device and the ranking of permission groups in terms of

their relevancy to the corresponding application. Then, based

on the collected information from the user, it builds the risk

assessment baseline for her applications. Finally, using the

generated baseline, RiskMon ranks installed applications

based on risk of the app’s interactions, which is measured by

how much it deviates from the risk assessment baseline.

Regarding the implementation of RiskMon, it does not

address the interactions between third-party applications and

interactions that do not utilize Binder. This, indeed illustrates

potential attack vectors that can bypass RiskMon.

2.2.2 RiskRanker

RiskRanker [5], is a proactive scheme to spot zero-day

Android malware [6]. It tries to assess potential security risks

caused by untrusted apps. The authors develop an automated

system in order to analyze the dangerous behavior of apps

dynamically.

RiskRanker’s assessment system performs a two-stage risk

analysis. First, it identifies apps with high and medium risk. In

order to identify these apps it traces non obfuscated executions

of apps that invoke (i) launching root exploits, (ii) illegal cost

creation, and (iii) privacy violation attacks. In the second stage

87

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

of analysis, in order to discover those apps that encrypt exploit

code to evade the first stage analysis it performs a further

investigation through analyzing suspicious app behavior. To

address this challenge, they develop a set of heuristics to map

apps to related risk categories (High, Medium, and Low risk).

Figure 4 shows the RiskRanker’s architecture.

In order to evaluate the proposed solution, they implement

a prototype to evaluate using 118,318 apps (104,874 distinct

apps) collected from different official and unofficial app

markets. After the evaluation process, the first-stage risk

analysis has discovered 2,461 suspicious apps and the second-

stage analysis identified 840 apps. Among these discovered 3,

281 unique apps, they successfully uncover 322 (or 9.81%)

zero-day malware belonging to 11 distinct families. It should

be noted that the main challenge of the RiskRanker is that they

use a same set of simple heuristics against encryption and code

loading, which is not effective.

2.2.2 DroidScope

Lok et al. present DroidScope [7], an Android analysis

platform, which is based on Virtualization Malware Analysis

(VMA). DroidScope reconstructs both the OS level and Java-

level semantics views. In fact, DroidScope is a Virtual

Machine Introspection (VMI) dynamic analysis and it is built

on QEMU [8]

Emulator with a set of defined APIs as custom analysis

plugins. In order to collect apps’ activities and trace

executions, DroidScope exports three types of APIs related to

three layers of Android device: hardware, framework and

Dalvik Virtual Machine.

DroidScope is tested using two Android malware families,

DroidKungFu and DroidDream, and the results show that

DroidScope detects them successfully. Figure 5 shows the

DroidScope’s architecture and its instrumentation interface.

2.2.4 DroidRanger

In this work [2], authors present a study to evaluate the

safety of apps on Google Play and some other existing

unofficial Android app markets. They propose a two-stage

analysis to detect current known malware and zero-day

malware. In order to detect known malware, they use a

permission-based behavioral footprinting scheme. In the

second stage, they apply a heuristics-based filtering scheme to

identify certain inherent behaviors of unknown malicious

families (zero-day malware).

They tested the DroidRanger using 204, 040 apps collected

from five different Android Markets. The results show that

DroidRanger detected 211 malicious apps: 32 from the official

Android Market (0.02% infection rate) and 179 from

alternative marketplaces (infection rates ranging from 0.20%

to 0.47%).The overall architecture of DroidRanger is shown in

Figure 6.

2.2.5 DroidMoss

In this work, an application similarity measurement system

called DroidMOSS [2] is proposed that applies a fuzzy

hashing technique [9][10] to localize and detect the changes

from app-repackaging behavior. In fact, DroidMOSS is

proposed to detect repackaged applications on third-party

Android marketplaces. Given an app from a third-party

Android marketplace, they measure its similarity with those

apps from the official Android markets.

In order to detect a repackaged app, DroidMOSS extracts

the DEC opcode sequence of an app and generates a signature

fuzzy hashing signature from the opcode. Lastly, they

calculate the edit distance to see how similar each app pair is.

When the similarity exceeds certain threshold, they consider

one app in the pair is repackaged. The above scenario is

showed in Figure 7

DroidMOSS has several disadvantages. First, it only

calculates the similarity for DEX bytecode and ignores the

native code. Second, the opcode sequence does not consist of

high level semantic information and this causes false

negatives.

2.2.6 WHYPER

Pandita et al. propose WHYPER [11] as a Natural

Language Processing (NLP) solution to measure the

compatibility of requested permissions from apps. The related

apps’ descriptions provided by developers and the answers of

why the app needs the requested permissions are used to

access the compatibility of the permission requests. WHYPER

takes an application’s description from the market (provided

by developers) and a semantic model of a permission as input,

88

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

and determines which sentence (if any) in the description

indicates the use of the permission.

They have tested the WHYPER using 581 applications

collected from current Android app markets.

The results show 82.8% accuracy, and an average recall of

81.5% for three special permissions (address book, calendar,

and record audio) that protect frequently used security and

privacy sensitive resources.

The main challenge of WHYPER is those apps that are not

described by app developers and this causes false-positive

detection. Figure 8 depicts an overview of WHYPER

including its related components.

2.2.7 PScout

PScout [12] is proposed as a tool in order to extracts the

permission specification (permission map) from the Android

OS source code using static analysis. PScout works based on a

call graph, constructed from API calls. The way that PScout

extracts permission specifications is through performing

repeated reachability analyses between API calls and

permission checks on a call graph that is constructed from the

Android framework’s code base.Compared to the closest

related work, Stowaway [13], PScout is able to extract more

permission specification. In the reported experimentation, they

use PScout to analyze 4 versions of Android spanning version

2.2 up to the recently released Android 4.0. On Android 2.2,

PScout extracts 17, 218 mappings, whereas Stowaway derives

only 1,259. Figure 9 shows PScout architecture

2.2.8 AndroSimilar

In [3] authors propose AndroSimilar, an approach which

generates signature by extracting statistically improbable

features, to detect malicious Android apps. They claim that it

is effective against code obfuscation and repackaging.

AndroSimilar uses techniques such as string encryption,

method renaming, junk method injection, and control flow

modification to detect Android malware. AndroSimilar is a

syntactic footprinting mechanism [14] that finds regions of

statistical similarity with known malware to detect those

unknown, zero day samples. In AndroSimilar, they use a

statistical attribute extraction approach that explores

improbable byte features for capturing code homogeneity

among variants of known apps. After capturing the common

similarities among known apps, they identify code similarity

of an unknown sample and explore its similarity with known

malicious family.

In fact, they generate signatures of known malware

applications for different families of malware as a database of

knowledge. Later, they compare the unknown applications

with the captured features. If the similarity score of the

comparison passes the pre-defined threshold, they label the

app as a malware or repackaged app.

2.2.9 ComDroid

ComDroid [15] was proposed to detect application

communication vulnerabilities. Since most of these

vulnerabilities stem from the fact that Intents can be used for

both intra and inter-application communication, ComDroid

examines Android application interactions and identifies

security risks in application components. Vulnerabilities

include personal data loss and corruption, phishing, and other

unexpected behaviors.

ComDroid is a two-stage solution. First, it disassemble

application DEX files using the publicly available Dedexer

tool [16]. After disassembling apps, it parses the disassembled

output from Dedexer and logs potential component and Intent

vulnerabilities. The results of the reported experimentation on

20 apps shows that ComDroid found 34 exploitable

vulnerabilities; 12 of the 20 applications have at least one

vulnerability.

In addition to described works in this section, there are

many other related works: FlowDroid [17],Amandroid [18],

AppsPlayGround [19], ScanDroid [20], VetDroid [21],

Pegasus [22], AppIntent [23], Mobile-Sandbox [24],

PiggyApp [25], AnDarwin [26], Juxtapp [27], Stowaway [13],

DNADroid [28],Androguard [29], APKInspector [30], JEB

[31], Andrubis [32], AndroTotal [33], RobotDroid [34],CHEX

[35], Androwarn [36], MAdFraud [37], DECAF [38],

DroidChecker [39], MARVIN [40], Shinichi et al. [41], and

ProtectMyPrivacy [42]. These works all use static and

dynamic analysis tools to detect apps’ vulnerabilities and

detect malicious apps.

III. CONCLUSION

Alongside the expanding predominance of Android cell

phones, the quantity of Android applications including

malware is expanding day by day. Regardless of sent Android

security systems, malware exploit the Android security gaps to

abuse the allowed assets. Subsequently, numerous endeavors

have been proposed to limit the effort of vulnerabilities in

Android gadgets. In this study we examined the current

proposed works in two static and element bunches. The

proposed works are fundamentally conduct based and their

primary commitment is following the applications' framework

calls and breaking down the exercises to confine them from

high hazard exercises. Subsequent to looking into these works

we concocted two inquiries that proposed works are not fit for

noting fittingly. To begin with, are those practices

fundamentally unseemly? Second, would we be able to name

the applications as malware or amiable in view of the conduct?

REFERENCES

[1] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone

application certification,” in Proc. of the 16th ACM Conference on
Computer and Communications Security (CCS’09), Chicago, Illinois,

USA. ACM, November 2009, pp. 235–245. [Online]. Available:

http://doi.acm.org/10.1145/1653662.1653691

http://doi.acm.org/10.1145/1653662.1653691

89

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

[2] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged

smartphone applications in third-party android marketplaces,” in Proc. of
the 2nd ACM Conference on Data and Application Security and Privacy

(CODASPY’12), San Antonio, Texas, USA.ACM, March 2012, pp.

317–326. [Online]. Available:
http://doi.acm.org/10.1145/2133601.2133640

[3] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal,

“Androsimilar: Robust statistical feature signature for android malware
detection,” in Proc. of the 6th International Conference on Security of

Information and Networks (SIN’13), Aksaray, Turkey. ACM, November

2013, pp. 152–159.
[Online]. Available: http://doi.acm.org/10.1145/2523514.2523539

[4] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and

automated risk assessment of mobile applications,” in Proc. of
the 4th ACM Conference on Data and Application Security and Privacy

(CODASPY’14), San Antonio, Texas, USA. ACM, March 2014, pp. 99–

110. [Online]. Available: http://doi.acm.org/10.1145/2557547.2557549
[5] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:

Scalable and accurate zero-day android malware detection,” in Proc. of

the 10th International Conference on Mobile Systems, Applications, and
Services (MobiSys’12), Low Wood Bay, Lake District, UK. ACM, June

2012, pp. 281–294.

[Online]. Available: http://doi.acm.org/10.1145/2307636.2307663
[6] WikiPedia, “Zero-day attacks,” Online; accessed at July 8, 2015,

https://en.wikipedia.org/wiki/Zero-day.

[7] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis,” in

Proc. of the 21st USENIX Conference on Security Symposium

(Security’12), Bellevue, WA, USA. USENIX Association, August 2012,
pp. 29–29.

[Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.2362822

[8] F. Bellard, in Proc. of the 2005 USENIX Annual Technical Conference,
FREENIX Track, Anaheim, CA, USA. USENIX Association, April

2005, pp. 41–46.
[9] S. Server, “Fuzzy clarity: Using fuzzy hashing techniques to identify

malicious code,” Online; accessed at July 8, 2015,

http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.p
df.

[10] D. French, “Fuzzy hashing techniques in applied malware analysis,”

Online; accessed at July 8, 2015, http://blog.sei.cmu.edu/post.cfm/fuzzy-
hashing-techniques-in-applied-malware-analysis.

[11] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards

automating risk assessment of mobile applications,” in Proc. of the 22nd
USENIX Conference on Security (SEC’13), Washington, D.C., USA.

USENIX Association, August 2013, pp. 527–542. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2534766.2534812
[12] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing

the android permission specification,” in Proc. of the 2012 ACM

Conference on Computer and Communications Security (CCS’12),
Raleigh, North Carolina, USA. ACM, October 2012, pp. 217–228.

[Online]. Available: http://doi.acm.org/10.1145/2382196.2382222

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. Of the 18th ACM Conference on

Computer and Communications Security (CCS’11), Chicago, Illinois,

USA.ACM, October 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[14] S. Jana and V. Shmatikov, “Memento: Learning secrets from process

footprints,” in Security and Privacy (SP), 2012 IEEE Symposium on
(SP’12), San Francisco Bay Area, CA, USA, May 2012, pp. 143–157.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-

application communication in android,” in Proc. of the 9th
International Conference on Mobile Systems, Applications, and Services

(MobiSys’11), Bethesda, Maryland, USA. ACM, June 2011, pp.

239–252. [Online]. Available:
http://doi.acm.org/10.1145/1999995.2000018

[16] G. Paller, “Dedexer,” Online; accessed at June 25, 2015,

http://dedexer.sourceforge.net/.
[17] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le

Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow,

field, object-sensitive and lifecycle-aware taint analysis for android
apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, Jun. 2014.

[Online]. Available: http://doi.acm.org/10.1145/2666356.2594299

[18] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general

inter-component data flow analysis framework for security vetting of
android apps,” in Proc. of the 2014 ACM SIGSAC Conference on

Computer and Communications Security (CCS’14), Scottsdale, Arizona,

USA. ACM, November 2014, pp. 1329–1341. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660357

[19] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic

security analysis of smartphone applications,” in Proc. of the 3rd ACM
Conference on Data and Application Security and Privacy

(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013,

pp. 209–220. [Online]. Available:
http://doi.acm.org/10.1145/2435349.2435379

[20] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of android apps,” ACM SIGPLAN Notices, vol. 48,
no. 10, pp. 641–660, Oct. 2013.

[Online]. Available:http://doi.acm.org/10.1145/2544173.2509549

[21] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B.
Zang, “Vetting undesirable behaviors in android apps with permission

use analysis,” in Proc. of the 2013 ACM SIGSAC Conference on

Computer & Communications Security (CCS’13), Berlin,
Germany.ACM, November 2013, pp. 611–622. [Online]. Available:

http://doi.acm.org/10.1145/2508859.2516689

[22] K. Z. Chen, N. Johnson, S. Dai, K. Macnamara, T. Magrino, E. Wu, M.
Rinard, and D. Song, “Contextual policy enforcement in android

applications with permission event graphs,” 2013.

[23] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: analyzing sensitive data transmission in android for privacy

leakage detection,” in Proc. of the 2013 ACM SIGSAC Conference on

Computer & Communications Security (CCS’13), Berlin, Germany.
ACM, November 2013, pp. 1043–1054. [Online]. Available:

http://doi.acm.org/10.1145/2508859.2516676

[24] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann,
“Mobile-sandbox: Having a deeper look into android applications,” in

Proc. of the 28th Annual ACM Symposium on Applied Computing
(SAC’13), Coimbra, Portugal. ACM, March 2013, pp. 1808–1815.

[Online]. Available: http://doi.acm.org/10.1145/2480362.2480701

[25] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of ”piggybacked” mobile applications,” in Proc. of the 3rd

ACM Conference on Data and Application Security and Privacy

(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013, pp.
185–196.

[Online]. Available: http://doi.acm.org/10.1145/2435349.2435377

[26] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of
semantically similar android applications,” in Computer Security

(ESORICS’13),, J. Crampton, S. Jajodia, and K. Mayes, Eds. Springer

Berlin Heidelberg, 2013, vol. 8134, pp. 182–199. [Online].
Available:http: //dx.doi.org/10.1007/978-3-642-40203-6 11

[27] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A

scalable system for detecting code reuse among android applications,” in
Proc. of the 9th International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment (DIMVA’12), Heraklion, Crete,

Greece. Springer-Verlag, July 2013, pp. 62–81. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-37300-8 4

[28] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting

cloned applications on android markets,” in Proc. of the 17th European
Symposium on Research in Computer Security (ESORICS’12), Pisa,

Italy, LNCS, S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459.

Springer Berlin Heidelberg, September 2012, pp. 37–54. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33167-1 3

[29] Androguard, “Blackhat : Reverse engineering with androguard,” Online;

accessed at May 23, 2015, https://code.google.com/androguard.
[30] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: Automated

security validation of mobile apps at app markets,” in Proc. of the 2nd

International Workshop on Mobile Cloud Computing and Services
(MCS’11), Bethesda, Maryland, USA. ACM, 2011, pp. 21–26. [Online].

Available: http://doi.acm.org/10.1145/1999732.1999740

[31] JEB, “Jeb decompiler,” 2013. [Online]. Available: http://www.android-
ecompiler.com/(Online; LastAccessed11thFebruary2013).

[32] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,

V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later: A
View on Current Android Malware Behaviors,” in Proc. of the 3rd

International Workshop on Building Analysis Datasets and Gathering

http://doi.acm.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2523514.2523539
http://doi.acm.org/10.1145/2557547.2557549
http://doi.acm.org/10.1145/2307636.2307663
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2660267.2660357
http://doi.acm.org/10.1145/2435349.2435379
http://doi.acm.org/10.1145/2544173.2509549
http://doi.acm.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2435349.2435377
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://doi.acm.org/10.1145/1999732.1999740
http://www.android-decompiler.com/%20(Online;%20Last%20Accessed%2011th%20February%202013).

90

Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Experience Returns for Security (BADGERS’14), Wroclaw, Poland,

September 2014.
[33] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A flexible, scalable

toolbox and service for testing mobile malware detectors,” in Proc. of

the 3rd ACM Workshop on Security and Privacy in Smartphones;
Mobile Devices (SPSM’13), Berlin, Germany.ACM, November 2013,

pp. 49–54.

[Online]. Available: http://doi.acm.org/10.1145/2516760.2516768
[34] M. Zhao, T. Zhang, F. Ge,and Z. Yuan, “Robotdroid: A lightweight

malware detection framework on smartphones,” Journal of Networks,

vol. 7, no. 4, 2012.
[Online].Available:http://ojs.academypublisher.com/index.php/jnw/articl

e/view/jnw0704715722

[35] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proc. of the

2012 ACM Conference on Computer and Communications Security

(CCS’12), Raleigh, North Carolina, USA.ACM, October 2012, pp. 229–
240. [Online]. Available:

http://doi.acm.org/10.1145/2382196.2382223

[36] T. Debiaze, “Detecting malicious behavior for android applications by
static analysis,” Online; accessed at May 23, 2015,

https://github.com/maaaaz/androwarn.

[37] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud
in android applications,” in Proc. of the 12th Annual International

Conference on Mobile Systems, Applications, and Services

(MobiSys’14), Bretton Woods, NH, USA. ACM, June 2014, pp. 123–
134. [Online]. Available: http://doi.acm.org/10.1145/2594368.2594391

[38] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and

characterizing ad fraud in mobile apps,” in Proc. of the 11th
USENIX Symposium on Networked Systems Design and

Implementation (NSDI’14), Seattle, WA, USA. USENIX Association,

April 2014, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2616448.2616455

[39] P. P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: Analyzing android

applications for capability leak,” in Proc. of the 5th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WISEC’12),

Tucson, Arizona, USA. ACM, April 2012, pp. 125–136. [Online].

Available: http://doi.acm.org/10.1145/2185448.2185466
[40] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient

and Comprehensive Mobile App Classification Through Static and

Dynamic Analysis,” in Proc. of the 39th Annual International
Computers, Software & Applications Conference (COMPSAC), 2015.

[41] S. Matsumoto and K. Sakurai, “A proposal for the privacy leakage

verification tool for android application developers,” in Proc. of the 7th
International Conference on Ubiquitous Information Management and

Communication (ICUIMC’13), Kota Kinabalu, Malaysia. ACM,

January 2013, pp. 54:1–54:8.
[Online]. Available: http://doi.acm.org/10.1145/2448556.2448610

[42] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating

privacy leaks on ios devices using crowdsourcing,” in Proc. of the 11th
Annual International Conference on Mobile Systems, Applications, and

Services (MobiSys’13), Taipei, Taiwan. ACM, June 2013, pp. 97–110.

[Online]. Available:
http://doi.acm.org/10.1145/2462456.2464460

http://doi.acm.org/10.1145/2516760.2516768
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2594368.2594391
http://dl.acm.org/citation.cfm?id=2616448.2616455
http://doi.acm.org/10.1145/2185448.2185466
http://doi.acm.org/10.1145/2448556.2448610
http://doi.acm.org/10.1145/2462456.2464460

