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Abstract—Google's Android is a standout amongst the most well known portable working framework stages today, being sent on an 

extensive variety of cell phones from different makers. It is named as a benefit isolated working framework which actualizes some novel 

security components. Late research and security assaults on the stage, in any case, have demonstrated that the security model of Android is 

imperfect and is powerless against transitive use of benefits among applications. Benefit heightening assaults have been appeared to be 

noxious and with the across the board and developing utilization of the framework, the stage for these assaults is likewise becoming more 

extensive. This gives an inspiration to plan and execute better security structures and systems to alleviate these assaults. This paper talks 

about an arrangement and correlation of various systems and security expansions which are counteractive action and investigation based 

proposed in late research. 
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I.  INTRODUCTION  

ndroid is a popular platform for smart phones and 

tablet devices. Since the first release in 2008, its 

popularity and sales of devices hosting the system 

have increased at a very fast rate. 

A report by Strategy Analytics in January 2013 states that 

smartphone sales grew 38% in the last quarter of 2012 to reach 

217 million units worldwide, and over 700 million units for 

the entire year. Of this number, 68.4% devices operate the 

Android platform. In October 2012, Google said that there 

were about 700,000 applications available for downloading 

onto Android devices matching the number of applications on 

Apple’s App Store for iOS devices .There are a large number 

of end user devices and a large number of applications being 

used on them. Handsets today have become full-fledged 

computing platforms supporting complete operating systems 

and complex applications. However, this brings new security 

challenges. A recent mobile security report states that: “The 

sheer number of mobile applications at a time when the 

technology in mobile security is still in its infancy presents 

complex, multifaceted, and unprecedented security challenges 

to enterprises while putting individual privacy at high risk”. 

The current model of the Android Application Market allows 

developers to upload arbitrary applications at a minimal fee. 

This creates a large attack surface for malicious applications to 

be published on the market and installed on end user devices. 

According to the Kaspersky Security Bulletin 2012, 99% of 

the newly discovered mobile malicious programs target the 

Android platform. Soundcomber is a trojan that uses 

innocuous permissions and context-aware tone- and speech-

analysis to extract small amounts of targeted private data. The 

Trojan GGTracker (The Lookout Blog, 2012) sends SMS to a 

premium-rate number and can steal private information from 

the device. Apple screens applications posted to its 

AppMarket, which protects users from malicious applications. 

Nevertheless, applications could still have vulnerabilities that 

may be exploited. Google, on the other hand, does not screen 

applications being published to its market, making it possible 

for malicious applications to easily reach users. It occasionally 

takes down applications that are found to contain malware. 

Android implements a permissions and sandboxing 

mechanism through its middleware layer to control access to 

resources and mediate inter-application communication. It is a 

privilege separated system, with each application having its 

own distinct system identity. This model is not able to prevent 

transitive usage of permissions that can be leveraged to launch 

privilege escalation attacks. It is possible for a malicious 

application to gain capabilities leaked from benign 

applications making its capabilities more than it is permitted to 

have. It is possible to prevent this by having strong checking 

of permissions; however, since developers are not security-

minded, this is not used in practice. As a result, there is need 

for a more secure framework to be implemented to prevent 

these attacks. 

II. TAXONOMY OF EXISTING SOLUTIONS  

In this subsection we present our taxonomy of existing related 

security systems on Android OS. Since existing works are 

implemented in different ways and architectures using 

different techniques and mechanisms, we can categorize them 

in many ways. Our classification is objective-based. We group 

existing works in a category if they have same objective and 

characteristics. We categorize them into three main categories: 

(1) Prevention-based, (2) Analysis-based and (3) Runtime 

Monitoring. For this paper however we limit ourselves to 

discuss the first two only. 

2.1 Prevention-based 

Since Dalvik bytecode is vulnerable to reverse 

engineering, hackers are increasingly aiming at binary code 

targets to launch attacks on high-value mobile applications 

(paid/free) across all platforms. They can directly access, 

compromise, and exploit the binary code (e.g., analyze or 

reverse engineer sensitive code, modify code to change 
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application behavior, or inject malicious code) .Based on a 

new research study done by ARXAN .97% of the top 100 paid 

Android apps and 87% of the top 100 paid Apple iOS apps 

have been hacked using repackaging. 

In this subsection, we review remarkable existing works with 

focus on app repackaging attacks (code modification or code 

injection) and reverse engineering (code analysis). 

 

 
Fig. 1. Overall App ink architecture. 

 

 
Fig. 2. Kirin based software installer. 

2.1.1 Kirin 

Mitigating malicious apps at install time using certification 

process on apps is the main goal of Kirin [1]. 

Kirin uses a set of predefined security rules on apps’ requested 

permissions to find matched malicious permission requests 

and characteristics. Here, the rules are defined based on those 

permissions that are sensitive and leads to misusing of 

permissions and dangerous activities. 

They use a static analysis tool called Pscout in order to extract 

all permission specifications for Android apps without 

modifying the apps. Using this system at install time can help 

users to make real-time decisions whether installing the apps 

or not. They tested the Kirin using 311 downloaded apps from 

top ranked applications from an official Android app Market. 

After experiments, Kirin detects 5 malicious apps with a high 

level of security risk. Figure 2 shows the Kirin based software 

installer flow and its components. 

2.1.2 AppInk 

In order to mitigate app repackaging, Zhou et al. propose 

and develop a graph-based dynamic watermarking mechanism 

for Android apps. They designed and developed a tool named 

AppInk, which takes the source code of an app and a 

watermark value as inputs, in order to automatically generate a 

new app with a transparently-embedded watermark and the 

associated manifest app. 

They improve the system through embedding software 

watermarks dynamically into the running state of an app to 

represent the ownership of developers. After embedding the 

watermarks, the repackaged app can be verified by an 

authorized verifying party and embedded watermarks can be 

recognized through the manifest app without any user effort 

and interaction. It is worthy to note that the embedded code 

segments can be later recovered in order to extract the 

watermarks values. Figure 1 shows the overall AppInk 

architecture and its related components. 

In order to demonstrate effectiveness and resistance of the 

proposed solution, they study two other works and the results 

indicate that AppInk is effective in defending against common 

automatic repackaging attacks. 

2.2 Analysis-based solutions 

Similar to PC malware, mobile malware has begun taking 

steps to evade detection by camouflaging as benign apps. In 

this category, the main goal is to use static and dynamic 

analysis to detect security sensitive and malicious behaviors of 

apps . Proposed works in this category focus types of attacks: 

(1) malicious behavior detection, (2) app similarity detection 

in order to detect repackaged apps, (3) misusing of granted 

permissions and (4) detecting apps’ vulnerabilities. In this 

subsection we review works in any of the above subcategories. 

2.2.1 RiskMon 

RiskMon [4] tries to answer the question ”are those 

behaviors necessarily inappropriate?”. RiskMon is a machine-

learning approach for coping with this challenge and present a 

continuous and automated risk assessment framework. 

Figure 3 shows the basic architecture of the RiskMon. 

RiskMon combines users’ expectations and runtime behaviors 

of trusted applications to generate a risk assessment baseline 

that captures appropriate behaviors of applications. Users’ 

perceptions on applications is the key part of the framework. 

First, it collects the user’s expectations on the installed apps 

on the device and the ranking of permission groups in terms of 

their relevancy to the corresponding application. Then, based 

on the collected information from the user, it builds the risk 

assessment baseline for her applications. Finally, using the 

generated baseline, RiskMon ranks installed applications 

based on risk of the app’s interactions, which is measured by 

how much it deviates from the risk assessment baseline. 

Regarding the implementation of RiskMon, it does not 

address the interactions between third-party applications and 

interactions that do not utilize Binder. This, indeed illustrates 

potential attack vectors that can bypass RiskMon. 

2.2.2 RiskRanker 

RiskRanker [5], is a proactive scheme to spot zero-day 

Android malware [6]. It tries to assess potential security risks 

caused by untrusted apps. The authors develop an automated 

system in order to analyze the dangerous behavior of apps 

dynamically. 

RiskRanker’s assessment system performs a two-stage risk 

analysis. First, it identifies apps with high and medium risk. In 

order to identify these apps it traces non obfuscated executions 

of apps that invoke (i) launching root exploits, (ii) illegal cost 

creation, and (iii) privacy violation attacks. In the second stage 
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of analysis, in order to discover those apps that encrypt exploit 

code to evade the first stage analysis it performs a further 

investigation through analyzing suspicious app behavior. To 

address this challenge, they develop a set of heuristics to map 

apps to related risk categories (High, Medium, and Low risk). 

Figure 4 shows the RiskRanker’s architecture. 

 

 
 

In order to evaluate the proposed solution, they implement 

a prototype to evaluate using 118,318 apps (104,874 distinct 

apps) collected from different official and unofficial app 

markets. After the evaluation process, the first-stage risk 

analysis has discovered 2,461 suspicious apps and the second-

stage analysis identified 840 apps. Among these discovered 3, 

281 unique apps, they successfully uncover 322 (or 9.81%) 

zero-day malware belonging to 11 distinct families. It should 

be noted that the main challenge of the RiskRanker is that they 

use a same set of simple heuristics against encryption and code 

loading, which is not effective. 

2.2.2 DroidScope 

Lok et al. present DroidScope [7], an Android analysis 

platform, which is based on Virtualization Malware Analysis 

(VMA). DroidScope reconstructs both the OS level and Java-

level semantics views. In fact, DroidScope is a Virtual 

Machine Introspection (VMI) dynamic analysis and it is built 

on QEMU [8] 

Emulator with a set of defined APIs as custom analysis 

plugins. In order to collect apps’ activities and trace 

executions, DroidScope exports three types of APIs related to 

three layers of Android device: hardware, framework and 

Dalvik Virtual Machine. 

DroidScope is tested using two Android malware families, 

DroidKungFu and DroidDream, and the results show that 

DroidScope detects them successfully. Figure 5 shows the 

DroidScope’s architecture and its instrumentation interface. 

 

 
2.2.4 DroidRanger 

In this work [2], authors present a study to evaluate the 

safety of apps on Google Play and some other existing 

unofficial Android app markets. They propose a two-stage 

analysis to detect current known malware and zero-day 

malware. In order to detect known malware, they use a 

permission-based behavioral footprinting scheme. In the 

second stage, they apply a heuristics-based filtering scheme to 

identify certain inherent behaviors of unknown malicious 

families (zero-day malware). 

They tested the DroidRanger using 204, 040 apps collected 

from five different Android Markets. The results show that 

DroidRanger detected 211 malicious apps: 32 from the official 

Android Market (0.02% infection rate) and 179 from 

alternative marketplaces (infection rates ranging from 0.20% 

to 0.47%).The overall architecture of DroidRanger is shown in 

Figure 6. 

 

 
 

2.2.5 DroidMoss 

In this work, an application similarity measurement system 

called DroidMOSS [2] is proposed that applies a fuzzy 

hashing technique [9][10] to localize and detect the changes 

from app-repackaging behavior. In fact, DroidMOSS is 

proposed to detect repackaged applications on third-party 

Android marketplaces. Given an app from a third-party 

Android marketplace, they measure its similarity with those 

apps from the official Android markets. 

In order to detect a repackaged app, DroidMOSS extracts 

the DEC opcode sequence of an app and generates a signature 

fuzzy hashing signature from the opcode. Lastly, they 

calculate the edit distance to see how similar each app pair is. 

When the similarity exceeds certain threshold, they consider 

one app in the pair is repackaged. The above scenario is 

showed in Figure 7 

DroidMOSS has several disadvantages. First, it only 

calculates the similarity for DEX bytecode and ignores the 

native code. Second, the opcode sequence does not consist of 

high level semantic information and this causes false 

negatives. 

2.2.6 WHYPER 

Pandita et al. propose WHYPER [11] as a Natural 

Language Processing (NLP) solution to measure the 

compatibility of requested permissions from apps. The related 

apps’ descriptions provided by developers and the answers of 

why the app needs the requested permissions are used to 

access the compatibility of the permission requests. WHYPER 

takes an application’s description from the market (provided 

by developers) and a semantic model of a permission as input, 
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and determines which sentence (if any) in the description 

indicates the use of the permission. 

They have tested the WHYPER using 581 applications 

collected from current Android app markets. 

The results show 82.8% accuracy, and an average recall of 

81.5% for three special permissions (address book, calendar, 

and record audio) that protect frequently used security and 

privacy sensitive resources. 

The main challenge of WHYPER is those apps that are not 

described by app developers and this causes false-positive 

detection. Figure 8 depicts an overview of WHYPER 

including its related components. 

2.2.7 PScout 

PScout [12] is proposed as a tool in order to extracts the 

permission specification (permission map) from the Android 

OS source code using static analysis. PScout works based on a 

call graph, constructed from API calls. The way that PScout 

extracts permission specifications is through performing 

repeated reachability analyses between API calls and 

permission checks on a call graph that is constructed from the 

Android framework’s code base.Compared to the closest 

related work, Stowaway [13], PScout is able to extract more 

permission specification. In the reported experimentation, they 

use PScout to analyze 4 versions of Android spanning version 

2.2 up to the recently released Android 4.0. On Android 2.2, 

PScout extracts 17, 218 mappings, whereas Stowaway derives 

only 1,259. Figure 9 shows PScout architecture 

 
 

2.2.8 AndroSimilar 

In [3] authors propose AndroSimilar, an approach which 

generates signature by extracting statistically improbable 

features, to detect malicious Android apps. They claim that it 

is effective against code obfuscation and repackaging. 

AndroSimilar uses techniques such as string encryption, 

method renaming, junk method injection, and control flow 

modification to detect Android malware. AndroSimilar is a 

syntactic footprinting mechanism [14] that finds regions of 

statistical similarity with known malware to detect those 

unknown, zero day samples. In AndroSimilar, they use a 

statistical attribute extraction approach that explores 

improbable byte features for capturing code homogeneity 

among variants of known apps. After capturing the common 

similarities among known apps, they identify code similarity 

of an unknown sample and explore its similarity with known 

malicious family. 

In fact, they generate signatures of known malware 

applications for different families of malware as a database of 

knowledge. Later, they compare the unknown applications 

with the captured features. If the similarity score of the 

comparison passes the pre-defined threshold, they label the 

app as a malware or repackaged app. 

2.2.9 ComDroid 

ComDroid [15] was proposed to detect application 

communication vulnerabilities. Since most of these 

vulnerabilities stem from the fact that Intents can be used for 

both intra and inter-application communication, ComDroid 

examines Android application interactions and identifies 

security risks in application components. Vulnerabilities 

include personal data loss and corruption, phishing, and other 

unexpected behaviors. 

ComDroid is a two-stage solution. First, it disassemble 

application DEX files using the publicly available Dedexer 

tool [16]. After disassembling apps, it parses the disassembled 

output from Dedexer and logs potential component and Intent 

vulnerabilities. The results of the reported experimentation on 

20 apps shows that ComDroid found 34 exploitable 

vulnerabilities; 12 of the 20 applications have at least one 

vulnerability. 

In addition to described works in this section, there are 

many other related works: FlowDroid [17],Amandroid [18], 

AppsPlayGround [19], ScanDroid [20], VetDroid [21], 

Pegasus [22], AppIntent [23], Mobile-Sandbox [24], 

PiggyApp [25], AnDarwin [26], Juxtapp [27], Stowaway [13], 

DNADroid [28],Androguard [29], APKInspector [30], JEB 

[31], Andrubis [32], AndroTotal [33], RobotDroid [34],CHEX 

[35], Androwarn [36], MAdFraud [37], DECAF [38], 

DroidChecker [39], MARVIN [40], Shinichi et al. [41], and 

ProtectMyPrivacy [42]. These works all use static and 

dynamic analysis tools to detect apps’ vulnerabilities and 

detect malicious apps. 

III. CONCLUSION 

Alongside the expanding predominance of Android cell 

phones, the quantity of Android applications including 

malware is expanding day by day. Regardless of sent Android 

security systems, malware exploit the Android security gaps to 

abuse the allowed assets. Subsequently, numerous endeavors 

have been proposed to limit the effort of vulnerabilities in 

Android gadgets. In this study we examined the current 

proposed works in two static and element bunches. The 

proposed works are fundamentally conduct based and their 

primary commitment is following the applications' framework 

calls and breaking down the exercises to confine them from 

high hazard exercises. Subsequent to looking into these works 

we concocted two inquiries that proposed works are not fit for 

noting fittingly. To begin with, are those practices 

fundamentally unseemly? Second, would we be able to name 

the applications as malware or amiable in view of the conduct? 

REFERENCES 

[1] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone 

application certification,” in Proc. of the 16th ACM Conference on 
Computer and Communications Security (CCS’09), Chicago, Illinois, 

USA. ACM, November 2009, pp. 235–245. [Online]. Available: 

http://doi.acm.org/10.1145/1653662.1653691 

http://doi.acm.org/10.1145/1653662.1653691


 

 
 

 

89 

 
Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of 

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016. 

International Journal of Scientific and Technical Advancements 
  ISSN: 2454-1532 

 

[2] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged 

smartphone applications in third-party android marketplaces,” in Proc. of 
the 2nd ACM Conference on Data and Application Security and Privacy 

(CODASPY’12), San Antonio, Texas, USA.ACM, March 2012, pp. 

317–326. [Online]. Available: 
http://doi.acm.org/10.1145/2133601.2133640 

[3] P. Faruki, V. Ganmoor, V. Laxmi, M. S. Gaur, and A. Bharmal, 

“Androsimilar: Robust statistical feature signature for android malware 
detection,” in Proc. of the 6th International Conference on Security of 

Information and Networks (SIN’13), Aksaray, Turkey. ACM, November 

2013, pp. 152–159.  
[Online]. Available: http://doi.acm.org/10.1145/2523514.2523539 

[4] Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu, “Riskmon: Continuous and 

automated risk assessment of mobile applications,” in Proc. of 
the 4th ACM Conference on Data and Application Security and Privacy 

(CODASPY’14), San Antonio, Texas, USA. ACM, March 2014, pp. 99–

110. [Online]. Available: http://doi.acm.org/10.1145/2557547.2557549 
[5] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: 

Scalable and accurate zero-day android malware detection,” in Proc. of 

the 10th International Conference on Mobile Systems, Applications, and 
Services (MobiSys’12), Low Wood Bay, Lake District, UK. ACM, June 

2012, pp. 281–294.  

[Online]. Available: http://doi.acm.org/10.1145/2307636.2307663 
[6] WikiPedia, “Zero-day attacks,” Online; accessed at July 8, 2015, 

https://en.wikipedia.org/wiki/Zero-day. 

[7] L. K. Yan and H. Yin, “Droidscope: Seamlessly reconstructing the os 
and dalvik semantic views for dynamic android malware analysis,” in 

Proc. of the 21st USENIX Conference on Security Symposium 

(Security’12), Bellevue, WA, USA. USENIX Association, August 2012, 
pp. 29–29.  

[Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.2362822 

[8] F. Bellard, in Proc. of the 2005 USENIX Annual Technical Conference, 
FREENIX Track, Anaheim, CA, USA. USENIX Association, April 

2005, pp. 41–46. 
[9] S. Server, “Fuzzy clarity: Using fuzzy hashing techniques to identify 

malicious code,” Online; accessed at July 8, 2015, 

http://www.shadowserver.org/wiki/uploads/Information/FuzzyHashing.p
df. 

[10] D. French, “Fuzzy hashing techniques in applied malware analysis,” 

Online; accessed at July 8, 2015, http://blog.sei.cmu.edu/post.cfm/fuzzy-
hashing-techniques-in-applied-malware-analysis. 

[11] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards 

automating risk assessment of mobile applications,” in Proc. of the 22nd 
USENIX Conference on Security (SEC’13), Washington, D.C., USA. 

USENIX Association, August 2013, pp. 527–542. [Online]. Available: 

http://dl.acm.org/citation.cfm?id=2534766.2534812 
[12] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing 

the android permission specification,” in Proc. of the 2012 ACM 

Conference on Computer and Communications Security (CCS’12), 
Raleigh, North Carolina, USA. ACM, October 2012, pp. 217–228. 

[Online]. Available: http://doi.acm.org/10.1145/2382196.2382222 

[13] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android 
permissions demystified,” in Proc. Of the 18th ACM Conference on 

Computer and Communications Security (CCS’11), Chicago, Illinois, 

USA.ACM, October 2011, pp. 627–638. [Online]. Available: 
http://doi.acm.org/10.1145/2046707.2046779 

[14] S. Jana and V. Shmatikov, “Memento: Learning secrets from process 

footprints,” in Security and Privacy (SP), 2012 IEEE Symposium on 
(SP’12), San Francisco Bay Area, CA, USA, May 2012, pp. 143–157. 

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-

application communication in android,” in Proc. of the 9th 
International Conference on Mobile Systems, Applications, and Services 

(MobiSys’11), Bethesda, Maryland, USA. ACM, June 2011, pp. 

239–252. [Online]. Available: 
http://doi.acm.org/10.1145/1999995.2000018 

[16] G. Paller, “Dedexer,” Online; accessed at June 25, 2015, 

http://dedexer.sourceforge.net/. 
[17] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le 

Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, 

field, object-sensitive and lifecycle-aware taint analysis for android 
apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, Jun. 2014. 

[Online]. Available: http://doi.acm.org/10.1145/2666356.2594299 

[18] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general 

inter-component data flow analysis framework for security vetting of 
android apps,” in Proc. of the 2014 ACM SIGSAC Conference on 

Computer and Communications Security (CCS’14), Scottsdale, Arizona, 

USA. ACM, November 2014, pp. 1329–1341. [Online]. Available: 
http://doi.acm.org/10.1145/2660267.2660357 

[19] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic 

security analysis of smartphone applications,” in Proc. of the 3rd ACM 
Conference on Data and Application Security and Privacy 

(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013, 

pp. 209–220. [Online]. Available: 
http://doi.acm.org/10.1145/2435349.2435379 

[20] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for 

systematic testing of android apps,” ACM SIGPLAN Notices, vol. 48, 
no. 10, pp. 641–660, Oct. 2013.  

[Online]. Available:http://doi.acm.org/10.1145/2544173.2509549 

[21] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. 
Zang, “Vetting undesirable behaviors in android apps with permission 

use analysis,” in Proc. of the 2013 ACM SIGSAC Conference on 

Computer &#38; Communications Security (CCS’13), Berlin, 
Germany.ACM, November 2013, pp. 611–622. [Online]. Available: 

http://doi.acm.org/10.1145/2508859.2516689 

[22] K. Z. Chen, N. Johnson, S. Dai, K. Macnamara, T. Magrino, E. Wu, M. 
Rinard, and D. Song, “Contextual policy enforcement in android 

applications with permission event graphs,” 2013. 

[23] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, 
“Appintent: analyzing sensitive data transmission in android for privacy 

leakage detection,” in Proc. of the 2013 ACM SIGSAC Conference on 

Computer &#38; Communications Security (CCS’13), Berlin, Germany. 
ACM, November 2013, pp. 1043–1054. [Online]. Available: 

http://doi.acm.org/10.1145/2508859.2516676 

[24] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann, 
“Mobile-sandbox: Having a deeper look into android applications,” in 

Proc. of the 28th Annual ACM Symposium on Applied Computing 
(SAC’13), Coimbra, Portugal. ACM, March 2013, pp. 1808–1815. 

[Online]. Available: http://doi.acm.org/10.1145/2480362.2480701 

[25] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable 
detection of ”piggybacked” mobile applications,” in Proc. of the 3rd 

ACM Conference on Data and Application Security and Privacy 

(CODASPY’13), San Antonio, Texas, USA. ACM, February 2013, pp. 
185–196.  

[Online]. Available: http://doi.acm.org/10.1145/2435349.2435377 

[26] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of 
semantically similar android applications,” in Computer Security 

(ESORICS’13),, J. Crampton, S. Jajodia, and K. Mayes,  Eds. Springer 

Berlin Heidelberg, 2013, vol. 8134, pp. 182–199. [Online]. 
Available:http: //dx.doi.org/10.1007/978-3-642-40203-6 11 

[27] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A 

scalable system for detecting code reuse among android applications,” in 
Proc. of the 9th International Conference on Detection of Intrusions and 

Malware, and Vulnerability Assessment (DIMVA’12), Heraklion, Crete, 

Greece. Springer-Verlag, July 2013, pp. 62–81. [Online]. Available: 
http://dx.doi.org/10.1007/978-3-642-37300-8 4 

[28] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting 

cloned applications on android markets,” in Proc. of the 17th European 
Symposium on Research in Computer Security (ESORICS’12), Pisa, 

Italy, LNCS, S. Foresti, M. Yung, and F. Martinelli, Eds., vol. 7459. 

Springer Berlin Heidelberg, September 2012, pp. 37–54. [Online]. 
Available: http://dx.doi.org/10.1007/978-3-642-33167-1 3 

[29] Androguard, “Blackhat : Reverse engineering with androguard,” Online; 

accessed at May 23, 2015, https://code.google.com/androguard. 
[30] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: Automated 

security validation of mobile apps at app markets,” in Proc. of the 2nd 

International Workshop on Mobile Cloud Computing and Services 
(MCS’11), Bethesda, Maryland, USA. ACM, 2011, pp. 21–26. [Online]. 

Available: http://doi.acm.org/10.1145/1999732.1999740 

[31] JEB, “Jeb decompiler,” 2013. [Online]. Available: http://www.android- 
ecompiler.com/(Online; LastAccessed11thFebruary2013). 

[32] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, 

V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later: A 
View on Current Android Malware Behaviors,” in Proc. of the 3rd 

International Workshop on Building Analysis Datasets and Gathering 

http://doi.acm.org/10.1145/2133601.2133640
http://doi.acm.org/10.1145/2523514.2523539
http://doi.acm.org/10.1145/2557547.2557549
http://doi.acm.org/10.1145/2307636.2307663
http://dl.acm.org/citation.cfm?id=2362793.2362822
http://dl.acm.org/citation.cfm?id=2534766.2534812
http://doi.acm.org/10.1145/2382196.2382222
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/1999995.2000018
http://doi.acm.org/10.1145/2666356.2594299
http://doi.acm.org/10.1145/2660267.2660357
http://doi.acm.org/10.1145/2435349.2435379
http://doi.acm.org/10.1145/2544173.2509549
http://doi.acm.org/10.1145/2508859.2516689
http://doi.acm.org/10.1145/2508859.2516676
http://doi.acm.org/10.1145/2480362.2480701
http://doi.acm.org/10.1145/2435349.2435377
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://doi.acm.org/10.1145/1999732.1999740
http://www.android-decompiler.com/%20(Online;%20Last%20Accessed%2011th%20February%202013).


 

 
 

 

90 

 
Akshay Bhardwaj and A J Singh, “A taxonomy of prevention and analysis based security solutions for android,” International Journal of 

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 85-90, 2016. 

International Journal of Scientific and Technical Advancements 
  ISSN: 2454-1532 

 

Experience Returns for Security (BADGERS’14), Wroclaw, Poland, 

September 2014. 
[33] F. Maggi, A. Valdi, and S. Zanero, “Andrototal: A flexible, scalable 

toolbox and service for testing mobile malware detectors,” in Proc. of 

the 3rd ACM Workshop on Security and Privacy in Smartphones; 
Mobile Devices (SPSM’13), Berlin, Germany.ACM, November 2013, 

pp. 49–54.  

[Online]. Available: http://doi.acm.org/10.1145/2516760.2516768 
[34] M. Zhao, T. Zhang, F. Ge,and Z. Yuan, “Robotdroid: A lightweight 

malware detection framework on smartphones,” Journal of Networks, 

vol. 7, no. 4, 2012. 
[Online].Available:http://ojs.academypublisher.com/index.php/jnw/articl

e/view/jnw0704715722 

[35] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting 
android apps for component hijacking vulnerabilities,” in Proc. of the 

2012 ACM Conference on Computer and Communications Security 

(CCS’12), Raleigh, North Carolina, USA.ACM, October 2012, pp. 229–
240. [Online]. Available: 

http://doi.acm.org/10.1145/2382196.2382223 

[36] T. Debiaze, “Detecting malicious behavior for android applications by 
static analysis,” Online; accessed at May 23, 2015, 

https://github.com/maaaaz/androwarn. 

[37] J. Crussell, R. Stevens, and H. Chen, “Madfraud: Investigating ad fraud 
in android applications,” in Proc. of the 12th Annual International 

Conference on Mobile Systems, Applications, and Services 

(MobiSys’14), Bretton Woods, NH, USA. ACM, June 2014, pp. 123–
134. [Online]. Available: http://doi.acm.org/10.1145/2594368.2594391 

[38] B. Liu, S. Nath, R. Govindan, and J. Liu, “DECAF: Detecting and 

characterizing ad fraud in mobile apps,” in Proc. of the 11th 
USENIX Symposium on Networked Systems Design and 

Implementation (NSDI’14), Seattle, WA, USA. USENIX Association, 

April 2014, pp. 57–70. [Online]. Available: 
http://dl.acm.org/citation.cfm?id=2616448.2616455 

[39] P. P. Chan, L. C. Hui, and S. M. Yiu, “Droidchecker: Analyzing android 

applications for capability leak,” in Proc. of the 5th ACM Conference on 
Security and Privacy in Wireless and Mobile Networks (WISEC’12), 

Tucson, Arizona, USA. ACM, April 2012, pp. 125–136. [Online]. 

Available: http://doi.acm.org/10.1145/2185448.2185466 
[40] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient 

and Comprehensive Mobile App Classification Through Static and 

Dynamic Analysis,” in Proc. of the 39th Annual International 
Computers, Software & Applications Conference (COMPSAC), 2015. 

[41] S. Matsumoto and K. Sakurai, “A proposal for the privacy leakage 

verification tool for android application developers,” in Proc. of the 7th 
International Conference on Ubiquitous Information Management and 

Communication (ICUIMC’13), Kota Kinabalu, Malaysia. ACM, 

January 2013, pp. 54:1–54:8.  
[Online]. Available: http://doi.acm.org/10.1145/2448556.2448610 

[42] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating 

privacy leaks on ios devices using crowdsourcing,” in Proc. of the 11th 
Annual International Conference on Mobile Systems, Applications, and 

Services (MobiSys’13), Taipei, Taiwan. ACM, June 2013, pp. 97–110. 

[Online]. Available: 
http://doi.acm.org/10.1145/2462456.2464460 

 

 
 

http://doi.acm.org/10.1145/2516760.2516768
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722
http://ojs.academypublisher.com/index.php/jnw/article/view/jnw0704715722
http://doi.acm.org/10.1145/2382196.2382223
http://doi.acm.org/10.1145/2594368.2594391
http://dl.acm.org/citation.cfm?id=2616448.2616455
http://doi.acm.org/10.1145/2185448.2185466
http://doi.acm.org/10.1145/2448556.2448610
http://doi.acm.org/10.1145/2462456.2464460

