

139

Preeti Dubey and Komal Sarita, “Maze generation & solver,” International Journal of Scientific and Technical Advancements, Volume 2,

Issue 4, pp. 139-142, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Maze Generation & Solver

Preeti Dubey, Komal Sarita

Email address: preetidubey2000@yahoo.com,

Abstract—The first half of the paper provides brief introduction to the maze problem, followed by a summary of several maze generation

and maze solving algorithms. Later it discusses the algorithm used by the author for automatic and randomized maze generation and its

solver.

Keywords— Maze, maze generation, maze generation algorithms, maze solver.

I. INTRODUCTION

 maze is a path or collection of paths, typically

from an entrance to a goal through which the

solver must find a route. Maze generation is a

puzzle tour which has many branched passages. Some

branches are closed, and some lead to the end of the tour. The

maze solver starts from a starting point and aims to find a

valid path between the start and the end point.

Mazes have become very popular as a fun and entertainment

tool and also as a very interesting domain from the

mathematical point of view. Brain training and entertainment

are considered as primary goals of maze application. Mazes

have been applied in navigation problems which brought up

the need of automatic maze generation.

II. MAZE GENERATION

Maze generation involves designing the layout of passages

and walls within a maze. There are many different approaches

of generating mazes, with various maze generation algorithms

for building them. The two methods used to generate

automated mazes are:

i. Wall adding: This method requires setting obstructions

(called walls) in an open area.

ii. Passage Carving: This method requires marking the valid

path carving passages", one marks out the network of

available routes. ii. Some maze generation algorithms (e.g.

Prim’s algorithm) can be implemented both ways, i.e. as a

passage carver as well as a wall adder.

III. IMAZE GENERATION

Automatic maze can be generated by different methods

such as graph based methods, recursive division method and

other non graph theory based algorithms such as Eller’s

algorithm and Wilson’s algorithm etc. Graph based algorithms

are popular for maze generation, since it is a set of vertices

and a set of edges. The following constraints have to be taken

care off while generating a maze:

i. The maze should not have any loops.

ii. The maze should not have any isolated areas.

iii. There should be exactly one path between any pair of cells.

Graph based Maze generation algorithms:

Some graph based maze generation algorithms are:

i. Depth First Serach (DFS)

ii. Kruskal’s Algorithm

iii. Prim’s Algorithm

IV. MAZE SOLVING ALGORITHMS/PATH FINDING

ALGORITHMS

Maze solving is the act of finding a route through the maze

from the start to finish. Different solving approaches can be

followed. In some methods of solving maze there no prior

knowledge of the maze and in some approaches heuristics can

be used. A very typical approach to solve a maze is so called

wall following. The two basic approaches used for solving

mazes are:

i. Brute force solving: This approach, all paths are traced to

check whether the destination has been reached. It is a very

fast approach. This approach is not practical for large sized

mazes as it is likely to increase the time complexity.

ii. Analytic solving: In this approach, in order to find the

solution path the solver is allowed to analyze a part of the

maze or the whole maze and rule out a possible dead end. It is

helpful in large-sized mazes.

V. IMPLEMENTATION

The automatic maze generation and solver developed by

the authors as a part of the miniproject for the completion of

the degree of MCA in the department of Computer Science &

IT, Central University of Jammu is discussed in this section of

the paper. This project has been implemented using the Depth

First Algorithm. This project has been developed using

VC#.net, GDI+.

Implementation of DFS to generate the maze:

The algorithm used is discusse dg ebneelorawt:e a Maze:

1) Push a random start point onto the stack. Call this start

point as initial square 'current square'.

2) Repeat while the stack is not empty:

a) Get list of all unvisited neighbouring squares to the current

square

b) If there are neighbours then

i) Choose one of the neighbours at random. Call it 'temp'.

ii) Remove the wall between 'temp' and the current square.

iii) Push the current square into the stack.

iv) Make the current square equals 'temp'.

v) Else if there are no neighbours, pop a square from the stack.

Make the current square equal to it.

After executing this algorithm, a 'prefect maze with no’

dead end' is generated and has a single solution. The following

A

140

Preeti Dubey and Komal Sarita, “Maze generation & solver,” International Journal of Scientific and Technical Advancements, Volume 2,

Issue 4, pp. 139-142, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

figure I shows the beginning of the maze and figure II shows a

perfect maze generated by implementing the above mentioned

algorithm.

Fig I: below shows the beginning of maze generation

Fig II: below shows an automated perfect maze generated on the click a button

Implementation of DFS to Solve the Maze

DFS with backtracking is used to solve the generated. The

following algorithm is used for path finding in our project:

function DFS(Cell start) : Boolean

if start is equal to the maze end

Add start to 'foundPath'

Mark start as visited

Return true

Else if

Start is visited already

Return false

Else

Mark start as visited

For each neighbour of start

If the wall between start and neighbour is

knocked

Recursively call DFS function with the

neighbour

If the call returns true

Add start to 'found Path'

Return true

If this point is reached, return false

This algorithm finds path to the maze end. When it returns

true, it adds the current location to 'found Path', causing all

other calls in the stack to return true and add their current

locations. The following figure III shoes the beginning of the

path finding in the maze.

Fig. III: beginning of path finding in maze.

Fig. IV: shows the full solution/path of the maze.

141

Preeti Dubey and Komal Sarita, “Maze generation & solver,” International Journal of Scientific and Technical Advancements, Volume 2,

Issue 4, pp. 139-142, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

VI. CONTROLS

The shape of the maze changes randomly. For this the

random function has been used. private Random random =

new Random(); The speed of maze generation and path

finding can be increased or decreased. The generation and

solver of the maze can be controlled by the following controls

designed.

Fig. V: Shows the controls.

GENERATE: It generates a random maze.

SOLVE: starts finds the path / solution of the maze.

SPEED: It controls the speed of maze generation and solver.

REFERENCES

[1] http://is.muni.cz/th/143508/fi_m/thesis.

[2] www.wikipedia.org
[3] Abbott,R.:LogicMazes,availableatURL

[4] <http://www.logicmazes.com>. 1.1.3

[5] Bouda, O.: Sbeˇr záznamu˚ postupu˚ rˇešení logických úloh,
Masarykova univerzita, Fakulta informatiky, 2010. 4.1

[6] Astbury, M.: Mike’s Mazes, available at URL

[7] <http://www.mikes-mazes.com> . A.3

APPENDIX

This appendix shows some other patterns of maze

generated randomly.

Fig. VI. Random Maze & Its solution.

Fig VII: randomly generated maze 2

142

Preeti Dubey and Komal Sarita, “Maze generation & solver,” International Journal of Scientific and Technical Advancements, Volume 2,

Issue 4, pp. 139-142, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

