

235

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Software Testing Goals, Methods and their In-depth

Analysis

Anil Gupta, Ayush Malhotra, Supriya Gupta

Department of Information Technology, MIET, Kot Bhalwal, Jammu, India

Abstract—Software Testing is an important area of research in the field of software engineering because it is the deciding factor for

successful project release and directly proportion to software quality and reliability. A lot of research has been already done in this field,

likely to be leveraged in future as software has become integral part of each and every domain to make it faster, easier and smarter. Software

testing is regarded as the most important phase of software development process, as without testing it is impossible to diagnose errors. This

paper explains the phases, principles and limitations of software testing. We tried to accumulate principles after detailed analysis of phases

of testing, based on available methodologies, users involved & importance of software testing. This paper describes Software testing, need

for software testing and Software testing goals. Further it describes about different Software testing techniques and different software testing

strategies. Finally it describes the difference between software testing and debugging.

Keywords— Debugging, software testing goals, software testing principles, software testing techniques, software testing strategies

I. INTRODUCTION

oftware testing refers to process of evaluating the

software with intention to find out error in it.

Software testing is a technique aimed at evaluating

an attribute or capability of a program or product and

determining that it meets its quality. Software testing is also

used to test the software for other software quality factors like

reliability, usability, integrity, security, capability, efficiency,

portability, maintainability, compatibility etc.

For many years now we are still using the same testing

techniques .some of which is crafted method rather than good

engineering methods. Testing can be costly but not testing

software can be even more costly. Software testing aims at

achieving certain a goals and principles which are to be

followed.

1.1. Need for Software testing

Software Testing is necessary because we all make

mistakes. Some of those mistakes are unimportant, but some

of them are expensive or dangerous. We need to check

everything and anything we produce because things can

always go wrong – humans make mistakes all the time.

Since we assume that our work may have mistakes, hence

we all need to check our own work. However some mistakes

come from bad assumptions and blind spots, so we might

make the same mistakes when we check our own work as we

made when we did it. So we may not notice the flaws in what

we have done.

Ideally, we should get someone else to check our work

because another person is more likely to spot the flaws.

There are several reasons which clearly tells us as why

Software Testing is important and what are the major things

that we should consider while testing of any product or

application.

Software testing is very important because of the following

reasons:

Software testing is really required to point out the defects

and errors that were made during the development phases.

It’s essential since it makes sure of the Customer’s

reliability and their satisfaction in the application.

It is very important to ensure the Quality of the product.

Quality product delivered to the customers helps in gaining

their confidence.

Testing is necessary in order to provide the facilities to the

customers like the delivery of high quality product or software

application which requires lower maintenance cost and hence

results into more accurate, consistent and reliable results.

Testing is required for an effective performance of

software application or product.

It’s important to ensure that the application should not

result into any failures because it can be very expensive in the

future or in the later stages of the development.

It’s required to stay in the business.

1.2. Goals for software testing

1. Short-term or immediate goals of software testing: - These

goals are the immediate results after performing testing. These

goals even may be set in the individual phases of SDLC. Some

of them are completely discussed below: a) Bug discovery:

The immediate goal about software testing is to find errors at

any stage of software development. More the bugs discovered

at early stage, better will be the success rate about software

testing. b) Bug prevention: It is the consequent action of bug

discovery. From the behavior and analysis of bugs discovered,

everyone in the software development team gets to learn how

to code so that bugs discovered should not be repeated in later

stages or future projects. Though errors always cannot be

prevented to zero, they can be minimized. In this sense

prevention of a bug is a superior goal of testing. 2. Long-term

goals of software testing: - These goals affect the product

quality in the deep run, when one cycle of the SDLC is over.

Some of them are completely discussed below: a) Quality:

Since software is also a product, so its quality is primary from

the user’s point of view. Thorough testing ensures superior

quality.

S

236

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Quality depends on various factors, such as correctness,

integrity, efficiency, and reliability. So to achieve quality you

have to achieve all the above mentioned factors of Quality. b)

Customer satisfaction: From the user’s perspective, the prime

goal of software testing is customer satisfaction only. If we

want the client and customer to be satisfied with the software

product, then testing should be complete and thorough. A

complete testing process achieves reliability, reliability

enhances the quality, and quality in turn, increases the

customer satisfaction. 3. Post-implementation goals of

software testing: - These goals are become essential after the

product is released. Some of them are completely discussed

below: a) a) Reduced maintenance cost: The maintenance cost

about any software product is not its physical cost, as effective

software does not wear out. The only maintenance cost in a

software product is its failure due to errors. Post- release errors

are always costlier to fix, as they are difficult to detect. Thus,

if testing has been done rigorously and effectively, then the

chances about failure are minimized and as a result of this

maintenance cost is reduced. b) Improved software testing

process: A testing process for one project may not be

blooming successful and there may be area for improvement.

Therefore, the bug history and post-implementation results can

be analyzed to find out snags in the present testing process,

which can be determine in future projects. Thus, the long-term

post-implementation goal is to improve the testing process for

future projects.

1.3. Testing principles

Principle is the rule or method in action that has to be

followed. Different testing principles are as follows: [2]

1) Test a program to try to make it fail

Testing is the process of executing a program with the

intent of finding errors. We should expose failures to make

testing process more effective.

2) Start testing early

This helps in fixing enormous errors in early stages of

development, reduces the rework of finding the errors in the

initial stages.

3) Testing is context dependant

Testing should be appropriate and different for different

points of time.

4) Define Test Plan

Test Plan usually describes test scope, test objectives, test

strategy, test environment, deliverables of the test, risks and

mitigation, schedule, levels of testing to be applied, methods,

techniques and tools to be used. Test plan should efficiently

meet the needs of an organization and clients as well.

5) Design Effective Test cases

Test case must be specified in a way that is measurable so

that testing results are unambiguous.

6) Test for valid as well as invalid Conditions

In addition to valid inputs, we should also test system for

invalid and unexpected inputs/conditions

7) Testing must be done by different persons at different levels

Different purpose addressed at different level of testing so

different person should perform testing differently using

different testing techniques at different level.

8) End of Testing

Testing has to be stopped somewhere. The testing can be

stopped when risk is under some limit or if there is limitations.

II. METHODS OF SOFTWARE TESTING

1) White box testing

White box testing is highly effective in detecting and

resolving problems, because bugs can often be found before

they cause trouble. [5] White box testing is the process of

giving the input to the system and checking how the system

processes that input to generate the required output. White box

testing is also called white box analysis, clear box testing or

clear box analysis. [5] White box testing is applicable at

integration, unit and system levels of the software testing

process.[3] White box testing is considered as a security

testing method that can be used to validate whether code

implementation follows intended design, to validate

implemented security functionality, and to uncover exploitable

vulnerabilities. White-box testing is the detailed investigation

of internal logic and structure of the code. White-box testing is

also called glass testing or open-box testing. In order to

perform white-box testing on an application, a tester needs to

know the internal workings of the code.

The tester needs to have a look inside the source code and

find out which unit/chunk of the code is behaving

inappropriately.

Some Different types of white box testing techniques are

as follows:-

1) Basis Path Testing

2) Loop Testing

3) Control Structure Testing

Advantages of white box testing:-

1) As the tester has knowledge of the source code, it becomes

very easy to find out which type of data can help in testing the

application effectively.

2) It helps in optimizing the code.

3) Extra lines of code can be removed which can bring in

hidden defects.

4) Due to the tester's knowledge about the code, maximum

coverage is attained during test scenario writing.

Disadvantages of white box testing:-

1) Due to the fact that a skilled tester is needed to perform

white-box testing, the costs are increased.

2) Sometimes it is impossible to look into every nook and

corner to find out hidden errors that may create problems, as

many paths will go untested.

3) It is difficult to maintain white-box testing, as it requires

specialized tools like code analyzers and debugging tools.

2) Black box testing

Black box testing is a software testing techniques in which

functionality of the software under test (SUT) is tested without

looking at the internal code structure, implementation details

and knowledge of internal paths of the software.

This type of testing is based entirely on the software

requirements and specifications.

Basically Black box testing is an integral part of

„Correctness testing‟ but its ideas are not limited to

237

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

correctness testing only. The goal is to test how well the

component conforms to the published requirement for the

component. Black box testing have little or no regard to the

internal logical structure of the system, it only examines the

fundamental aspect of the system. It makes sure that input is

properly accepted and output is correctly produced. [3]

Some Different types of Black box testing techniques are

as follows:-

1) Equivalent Partitioning

2) Boundary value Analysis

3) Cause-Effect Graphing Techniques

4) Comparison Testing

5) Fuzz Testing

6) Model-based testing

Advantages of Black box testing:-

1) The number of test cases are reduced to achieve reasonable

testing

2) The test cases can show presence or absence of classes of

errors.

3) Black box tester has no “bond” with the code.

4) Programmer and tester both are independent of each other.

5) More effective on larger units of code than clear box

testing.

Disadvantages of Black box testing:-

1) Test cases are hard to design without clear specifications.

2) Only small numbers of possible input can actually be tested.

3) Some parts of the back end are not tested at all.

4) Chances of having unidentified paths during this testing

5) Chances of having repetition of tests that are already done

by programmer

3) Grey box testing

The Graybox Testing Methodology is a software testing

method used to test software applications. The methodology is

platform and language independent. The current

implementation of the Graybox methodology is heavily

dependent on the use of a host platform debugger to execute

and validate the software under test. Recent studies have

confirmed that the Graybox method can be applied in real time

using software executing on the target platform.

Grey box testing techniques combined the testing

methodology of white box and black box. Grey box testing

technique is used for testing a piece of software against its

specifications but using some knowledge of its internal

working as well. The understanding of internals of the

program in grey box testing is more than black box testing, but

less than clear box testing. [3]

The Graybox methodology is a ten step process for testing

computer software.

Ten Step Graybox Methodology

1) Identify Inputs

2) Identify Outputs

3) Identify Major Paths

4) Identify Subfunction (SF)X

The Graybox methodology is a ten step process for testing

computer software.

5) Develop Inputs for SF X
6) Develop Outputs for SF X

2.2.2. Performance Testing

Performance Testing involve all the phases as the

mainstream testing life cycle as an independent discipline

which involve strategy such as plan, design, execution,

analysis and reporting. [3]

Not all software has specification on performance

explicitly. But every system will have implicit performance

requirements.

Performance has always been a great concern and driving

force of computer evolution. The goals of performance testing

can be performance bottleneck identification, performance

comparison and evaluation.

By performance testing we can measure the characteristics

of performance of any applications. One of the most important

objectives of performance testing is to maintain a low latency

of a website, high throughput and low utilization. [3]

Performance testing has two forms:-

Load testing

Load testing is the process of subjecting a computer,

peripheral, server, network or application to a work level

approaching the limits of its specifications. Load testing can

238

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

be done under controlled lab conditions to compare the

capabilities of different systems or to accurately measure the

capabilities of a single system. In this we can check whether

the software can handle the load of many user or not.

Stress testing

Stress testing is a testing, which is conducted to evaluate a

system or component at or beyond the limits of its specified

requirements to determine the load under which it fails and

how. [3]

2.2.3. Reliability Testing

The purpose of reliability testing is to discover potential

problems with the design as early as possible and, ultimately,

provide confidence that the system meets its reliability

requirements. Reliability testing is related to many aspects of

software in which testing process is included; this testing

process is an effective sampling method to measure software

reliability. In system after software is developed reliability

testing techniques like analyze or fix techniques can be carried

out to check whether to use the software.

2.2.4. Security Testing

Software quality, reliability and security are tightly

coupled. Flaws in software can be exploited by intruders to

opens security holes.

Security testing makes sure that only the authorized

personnel can access the program and only the authorized

personnel can access the functions available to their security

level. The security testing is performed to check whether there

is any information leakage in the sense by encrypting the

application or using wide range of software‟s and hardware's

and firewall etc.

III. SOFTWARE TESTING STRATEGIES

A strategy for software Testing integrates software test

case design methods into a well planned Series of steps that

result in successful Construction of software that result in

successful construction of software. Software testing

Strategies gives the road map for testing. A software testing

Strategy should be flexible enough to promote a customized

testing approach at same time it must be right enough.

Strategy is generally developed by project managers, software

engineer and testing specialist.

There are four different software testing strategies.

1) Unit testing

2) Integration testing

3) Acceptance/Validation testing

4) System testing

3.1. Unit testing

Unit is the smallest module i.e. smallest collection of lines

of code which can be tested. Unit testing is just one of the

levels of testing which go together to make the big picture of

testing a system. IT complements integration and system level

testing. It should also complement code reviews and

walkthroughs.

Unit testing is generally seen as a white box test class. That

is it is biased to looking at and evaluating the code as

implemented. Rather than evaluating conformance to some set

of requirements.

Benefits of Unit Testing:-

1) Unit level testing is very cost effective.

2) It provides a much greater reliability improvement for

resources expanded than system level testing.

In particular, it tends to reveal bugs which are otherwise

insidious and are often catastrophic like the strange system

crashes that occur in the field when something unusual

happens.

3) Be able to test parts of a project without waiting for the

other parts to be available,

4) Achieve parallelism in testing by being able to test and fix

problems simultaneously by many engineers,

5) Be able to detect and remove defects at a much less cost

compared to other later stages of testing,

6) Be able to take advantage of a number of formal testing

techniques available for unit testing,

7) Simplify debugging by limiting to a small unit the possible

code areas in which to search for bugs,

8) Be able to test internal conditions that are not easily reached

by external inputs in the larger integrated systems

9) Be able to achieve a high level of structural coverage of the

code,

10) Avoid lengthy compile-build-debug cycles when

debugging difficult problems.

Unit testing techniques

A number of effective testing techniques are usable in unit

testing stage. The testing techniques may be broadly divided

into three types:

1. Functional Testing

2. Structural Testing

3. Heuristic or Intuitive Testing

3.2. Integration testing

Integration testing is a systematic technique for

constructing the program structure while at the same time

conducting tests to uncover errors associated with interfacing.

The objective is to take unit tested components and build a

program structure that has been dictated by design.

Different Integration testing Strategies are discussed

below:-

1) Top down Integration testing

2) Bottom up Integration testing

Top down Integration

Top-down integration testing is an incremental approach to

construct program structure. Modules are integrated by

moving downward through the structure, beginning with the

main control module. Modules subordinate to the main control

module are incorporated into the structure in either a depth-

first or breadth-first manner. [4]

The integration process is performed in a series of five

steps: 1. The main control module is used as a test driver and

stubs are substituted for all components directly subordinate to

the main control module.

2. Depending on the integration approach selected subordinate

stubs are replaced one at a time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced

with the real component.

239

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

5. Regression testing may be conducted to ensure that new

errors have not been introduced.

It is not as relatively simple as it looks. In this logistic

problem can arise. Problem arises when testing low level

module which requires testing upper level. Stub replace low

level module at the beginning of top down testing. So no data

can flow in upward direction.

Bottom up Integration

Bottom-up integration testing, as its name implies, begins

construction and testing with atomic modules. Because

components are integrated from the bottom up, processing

required for components subordinate to a given level is always

available and the need for stubs is eliminated. [4]

A bottom-up integration strategy may be implemented

with the following steps:

1. Low-level components are combined into clusters that

perform a specific software subfunction.

2. A driver is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving

upward in the program structure.

3.3. Acceptance testing

Acceptance testing (also known as user acceptance testing)

is a type of testing carried out in order to verify if the product

is developed as per the standards and specified criteria and

meets all the requirements specified by customer. [4] This type

of testing is generally carried out by a user/customer where the

product is developed externally by another party.

Acceptance testing falls under black box testing

methodology where the user is not very much interested in

internal working/coding of the system, but evaluates the

overall functioning of the system and compares it with the

requirements specified by them. User acceptance testing is

considered to be one of the most important testing by user

before the system is finally delivered or handed over to the

end user. Acceptance testing is also known as validation

testing, final testing, QA testing, factory acceptance testing

and application testing etc. And in software engineering,

acceptance testing may be carried out at two different levels;

one at the system provider level and another at the end user

level.

Types of Acceptance Testing

User Acceptance Testing

User acceptance testing in software engineering is

considered to be an essential step before the system is finally

accepted by the end user. In general terms, user acceptance

testing is a process of testing the system before it is finally

accepted by user.

Alpha Testing & Beta Testing

Alpha testing is a type of acceptance testing carried out at

developer‟s site by users.[4] In this type of testing, the user

goes on testing the system and the outcome is noted and

observed by the developer simultaneously.

Beta testing is a type of testing done at user‟s site. The

users provide their feedback to the developer for the outcome

of testing. This type of testing is also known as field testing.

Feedback from users is used to improve the system/product

before it is released to other users/customers.

Operational Acceptance Testing

This type of testing is also known as operational

readiness/preparedness testing. It is a process of ensuring all

the required components (processes and procedures) of the

system are in place in order to allow user/tester to use it.

Contact and Regulation Acceptance Testing

In contract and regulation acceptance testing, the system is

tested against the specified criteria as mentioned in the

contract document and also tested to check if it meets/obeys

all the government and local authority regulations and laws

and also all the basic standards.

3.4. System testing

System testing of software or hardware is testing

conducted on a complete, integrated system to evaluate the

system's compliance with its specified requirements. System

testing falls within the scope of black box testing, and as such,

should require no knowledge of the inner design of the code or

logic System testing is actually a series of different tests

whose primary purpose is to fully exercise the computer-based

system. Although each test has a different purpose, all work to

verify that system elements have been properly integrated and

perform allocated functions.

Some of Different types of system testing are as follows:-

1. Recovery testing

2. Security testing

3. graphical user interface testing

4. Compatibility testing

Recovery Testing

Recovery testing is a system test that forces the software to

fail in a variety of ways and verifies that recovery is properly

performed. If recovery is automatic, re-initialization, check

pointing mechanisms, data recovery, and restart are evaluated

for correctness. If recovery requires human intervention, the

mean-time-to-repair is evaluated to determine whether it is

within acceptable limits.

Security testing

Security testing attempts to verify that protection

mechanisms built into a system will, in fact, protect it from

improper penetration.

During security testing, the tester plays the role(s) of the

individual who desires to penetrate the system. Anything goes!

The tester may attempt to acquire passwords through external

clerical means; may attack the system with custom software

designed to breakdown any defenses that have been

constructed; may overwhelm the system, thereby denying

service to others; may purposely cause system errors, hoping

to penetrate during recovery; may browse through insecure

data, hoping to find the key to system entry.

Graphical user interface testing

Graphical user interface testing is the process of testing a

product's graphical user interface to ensure it meets its written

specifications. This is normally done through the use of a

variety of test cases.

Compatibility testing

240

Anil Gupta, Ayush Malhotra, and Supriya Gupta, “Software testing goals, methods and their in-depth analysis,” International Journal of

Scientific and Technical Advancements, Volume 2, Issue 4, pp. 235-240, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Compatibility testing, part of software non-functional tests,

is testing conducted on the application to evaluate the

application's compatibility with the computing environment.

IV. DISCUSSION

In this section difference between testing and debugging is

shown. Software testing is a process that can be systematically

planned and specified. Test case design can be conducted, a

strategy can be defined, and results can be evaluated against

prescribed expectations. Debugging occurs as a consequence

of successful testing. That is, when a test case uncovers an

error, debugging is the process that results in the removal of

the error. The purpose of debugging is to locate and fix the

offending code responsible for a symptom violating a known

specification. Debugging typically happens during three

activities in software development, and the level of granularity

of the analysis required for locating the defect differs in these

three The first is during the coding process, when the

programmer translates the design into an executable code.

During this process the errors made by the programmer in

writing the code can lead to defects that need to be quickly

detected and fixed before the code goes to the next stages of

development. Most often, the developer also performs unit

testing to expose any defects at the module or component

level. The second place for debugging is during the later

stages of testing, involving multiple components or a complete

system, when unexpected behavior such as wrong return codes

or abnormal program termination may be found. A certain

amount of debugging of the test execution is necessary to

conclude that the program under test is the cause of the

unexpected behaviour.

V. CONCLUSION

This paper on Software testing describes in detail about

software testing, need of software testing, Software testing

goals and principles. . Software testing is often less formal and

rigorous than it should, and a main reason for that is because

we have struggled to define best practices, methodologies,

principles, standards for optimal software testing. To perform

testing effectively and efficiently, everyone involved with

testing should be familiar with basic software testing goals,

principles, limitations and concepts.

We further explains different Software testing techniques

such as Correctness testing, Performance testing, Reliability

testing, Security testing. Further we have discussed the basic

principles of black box testing, white box testing and gray box

testing. We have surveyed some of the strategies supporting

these paradigms, and have discussed their pros and cons. We

also describes about different software testing strategies such

as unit testing, Integration testing, acceptance testing and

system testing.

Finally there is comparison between debugging and

testing. Testing is more than just debugging .Testing is not

only used to locate defects and correct them it is also used in

validation, verification process and measurement.

REFERENCES

[1] Sahil Batra and Dr. Rahul Rishi,”IMPROVING QUALITY USING
TESTING STRATEGIES,” Journal of Gobal Research in Computer

Science, Volume 2,No.6,June 2011.

[2] S.M.K Quadri and Sheikh Umar Farooq,”Software Testing-
Goals,Principles and Limitations,” International Journal of Computer

Applications, Volume 6-No.9,September 2010.

[3] Mohd. Ehmer Khan,”Different Forms of Software Testing Techniques
for Finding Errors,”IJCSI International Journal of Computer Science

Issues,Vol. 7, Issue 3, No 1, May 2010.
[4] Ajay Jangra, Gurbaj Singh, Jasbir Singh and Rajesh

Verma,”EXPLORING TESTING STRATEGIES,” International Journal

of Information Technology and Knowledge Management, Volume 4,
NO.1,January-June 2011.

[5] Jovanovic and Irena,”Software Testing Methods and Techniques,” May

26, 2008.
[6] S. Pressman, “Software engineering”.

